Information

39.2C: Lung Volumes and Capacities - Biology

39.2C: Lung Volumes and Capacities - Biology


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Lung volumes measure the amount of air for a specific function, while lung capacities are the sum of two or more volumes.

Learning Objectives

  • Distinguish between lung volume and lung capacity

Key Points

  • The lung volumes that can be measured using a spirometer include tidal volume (TV), expiratory reserve volume (ERV), and inspiratory reserve volume (IRV).
  • Residual volume (RV) is a lung volume representing the amount of air left in the lungs after a forced exhalation; this volume cannot be measured, only calculated.
  • The lung capacities that can be calculated include vital capacity (ERV+TV+IRV), inspiratory capacity (TV+IRV), functional residual capacity (ERV+RV), and total lung capacity (RV+ERV+TV+IRV).

Key Terms

  • tidal volume: the amount of air breathed in or out during normal respiration
  • residual volume: the volume of unexpended air that remains in the lungs following maximum expiration
  • spirometry: the measurement of the volume of air that a person can move into and out of the lungs

Lung Volumes and Capacities

Different animals exhibit different lung capacities based on their activities. For example, cheetahs have evolved a much higher lung capacity than humans in order to provide oxygen to all the muscles in the body, allowing them to run very fast. Elephants also have a high lung capacity due to their large body and their need to take up oxygen in accordance with their body size.

Human lung size is determined by genetics, gender, and height. At maximal capacity, an average lung can hold almost six liters of air; however, lungs do not usually operate at maximal capacity. Air in the lungs is measured in terms of lung volumes and lung capacities. Volume measures the amount of air for one function (such as inhalation or exhalation) and capacity is any two or more volumes (for example, how much can be inhaled from the end of a maximal exhalation).

Lung Volumes

The volume in the lung can be divided into four units: tidal volume, expiratory reserve volume, inspiratory reserve volume, and residual volume. Tidal volume (TV) measures the amount of air that is inspired and expired during a normal breath. On average, this volume is around one-half liter, which is a little less than the capacity of a 20-ounce drink bottle. The expiratory reserve volume (ERV) is the additional amount of air that can be exhaled after a normal exhalation. It is the reserve amount that can be exhaled beyond what is normal. Conversely, the inspiratory reserve volume (IRV) is the additional amount of air that can be inhaled after a normal inhalation. The residual volume (RV) is the amount of air that is left after expiratory reserve volume is exhaled. The lungs are never completely empty; there is always some air left in the lungs after a maximal exhalation. If this residual volume did not exist and the lungs emptied completely, the lung tissues would stick together. The energy necessary to re-inflate the lung could be too great to overcome. Therefore, there is always some air remaining in the lungs. Residual volume is also important for preventing large fluctuations in respiratory gases (O2 and CO2). The residual volume is the only lung volume that cannot be measured directly because it is impossible to completely empty the lung of air. This volume can only be calculated rather than measured..

Lung volumes are measured by a technique called spirometry. An important measurement taken during spirometry is the forced expiratory volume (FEV), which measures how much air can be forced out of the lung over a specific period, usually one second (FEV1). In addition, the forced vital capacity (FVC), which is the total amount of air that can be forcibly exhaled, is measured. The ratio of these values (FEV1/FVC ratio) is used to diagnose lung diseases including asthma, emphysema, and fibrosis. If the FEV1/FVC ratio is high, the lungs are not compliant (meaning they are stiff and unable to bend properly); the patient probably has lung fibrosis. Patients exhale most of the lung volume very quickly. Conversely, when the FEV1/FVC ratio is low, there is resistance in the lung that is characteristic of asthma. In this instance, it is difficult for the patient to get the air out of his or her lungs. It takes a long time to reach the maximal exhalation volume. In either case, breathing is difficult and complications arise.

Lung Capacities

The lung capacities are measurements of two or more volumes. The vital capacity (VC) measures the maximum amount of air that can be inhaled or exhaled during a respiratory cycle. It is the sum of the expiratory reserve volume, tidal volume, and inspiratory reserve volume. The inspiratory capacity (IC) is the amount of air that can be inhaled after the end of a normal expiration. It is, therefore, the sum of the tidal volume and inspiratory reserve volume. The functional residual capacity (FRC) includes the expiratory reserve volume and the residual volume. The FRC measures the amount of additional air that can be exhaled after a normal exhalation. The total lung capacity (TLC) is a measurement of the total amount of air that the lung can hold. It is the sum of the residual volume, expiratory reserve volume, tidal volume, and inspiratory reserve volume..


Lung volume and capacity made easy: Chart & diagram

Lung volume and capacity are important metrics to differentiate a normal lung from a diseased lung. But, we often get confused between lung volume and lung capacities.

If you are the one who gets all volume and capacities mixed up, this article will help you clear the concept. In this article we will discuss:

  • The normal range of volume and capacities.
  • Lung volume and capacities in obstructive pulmonary disease.
  • Lung volume and capacities in restrictive pulmonary disease.
  • How actually lung volume is a part of lung capacities.

By the end of this article, you will be somewhat better than what you were before.


Definitions

Changes with pattern of breathing e.g. shallow breaths vs deep breaths

Increased in pregnancy

Relies on muscle strength and low airway resistance

Reduced in pregnancy, obesity, severe obstruction or proximal (of trachea/bronchi obstruction)


Capacities
are composites of 2 or more lung volumes. They are fixed as they do not change with the pattern of breathing.

Requires adequate compliance, muscle strength and low airway resistance

Restriction < 80% predicted

Hyperinflation > 120% predicted

Measured with helium dilution

Anatomical (serial) dead space is the volume of air that never reaches alveoli and so never participates in respiration. It includes volume in upper and lower respiratory tract up to and including the terminal bronchioles

Alveolar (distributive) dead space is the volume of air that reaches alveoli but never participates in respiration. This can reflect alveoli that are ventilated but not perfused, for example secondary to a pulmonary embolus.

Fig 1 – Diagram showing various lung volumes.


39.2 Gas Exchange across Respiratory Surfaces

By the end of this section, you will be able to do the following:

  • Name and describe lung volumes and capacities
  • Understand how gas pressure influences how gases move into and out of the body

The structure of the lung maximizes its surface area to increase gas diffusion. Because of the enormous number of alveoli (approximately 300 million in each human lung), the surface area of the lung is very large (75 m 2 ). Having such a large surface area increases the amount of gas that can diffuse into and out of the lungs.

Basic Principles of Gas Exchange

Gas exchange during respiration occurs primarily through diffusion. Diffusion is a process in which transport is driven by a concentration gradient. Gas molecules move from a region of high concentration to a region of low concentration. Blood that is low in oxygen concentration and high in carbon dioxide concentration undergoes gas exchange with air in the lungs. The air in the lungs has a higher concentration of oxygen than that of oxygen-depleted blood and a lower concentration of carbon dioxide. This concentration gradient allows for gas exchange during respiration.

Partial pressure is a measure of the concentration of the individual components in a mixture of gases. The total pressure exerted by the mixture is the sum of the partial pressures of the components in the mixture. The rate of diffusion of a gas is proportional to its partial pressure within the total gas mixture. This concept is discussed further in detail below.

Lung Volumes and Capacities

Different animals have different lung capacities based on their activities. Cheetahs have evolved a much higher lung capacity than humans it helps provide oxygen to all the muscles in the body and allows them to run very fast. Elephants also have a high lung capacity. In this case, it is not because they run fast but because they have a large body and must be able to take up oxygen in accordance with their body size.

Human lung size is determined by genetics, sex, and height. At maximal capacity, an average lung can hold almost six liters of air, but lungs do not usually operate at maximal capacity. Air in the lungs is measured in terms of lung volumes and lung capacities (Figure 39.12 and Table 39.1). Volume measures the amount of air for one function (such as inhalation or exhalation). Capacity is any two or more volumes (for example, how much can be inhaled from the end of a maximal exhalation).

The volume in the lung can be divided into four units: tidal volume, expiratory reserve volume, inspiratory reserve volume, and residual volume. Tidal volume (TV) measures the amount of air that is inspired and expired during a normal breath. On average, this volume is around one-half liter, which is a little less than the capacity of a 20-ounce drink bottle. The expiratory reserve volume (ERV) is the additional amount of air that can be exhaled after a normal exhalation. It is the reserve amount that can be exhaled beyond what is normal. Conversely, the inspiratory reserve volume (IRV) is the additional amount of air that can be inhaled after a normal inhalation. The residual volume (RV) is the amount of air that is left after expiratory reserve volume is exhaled. The lungs are never completely empty: There is always some air left in the lungs after a maximal exhalation. If this residual volume did not exist and the lungs emptied completely, the lung tissues would stick together and the energy necessary to reinflate the lung could be too great to overcome. Therefore, there is always some air remaining in the lungs. Residual volume is also important for preventing large fluctuations in respiratory gases (O2 and CO2). The residual volume is the only lung volume that cannot be measured directly because it is impossible to completely empty the lung of air. This volume can only be calculated rather than measured.

Capacities are measurements of two or more volumes. The vital capacity (VC) measures the maximum amount of air that can be inhaled or exhaled during a respiratory cycle. It is the sum of the expiratory reserve volume, tidal volume, and inspiratory reserve volume. The inspiratory capacity (IC) is the amount of air that can be inhaled after the end of a normal expiration. It is, therefore, the sum of the tidal volume and inspiratory reserve volume. The functional residual capacity (FRC) includes the expiratory reserve volume and the residual volume. The FRC measures the amount of additional air that can be exhaled after a normal exhalation. Lastly, the total lung capacity (TLC) is a measurement of the total amount of air that the lung can hold. It is the sum of the residual volume, expiratory reserve volume, tidal volume, and inspiratory reserve volume.

Lung volumes are measured by a technique called spirometry . An important measurement taken during spirometry is the forced expiratory volume (FEV) , which measures how much air can be forced out of the lung over a specific period, usually one second (FEV1). In addition, the forced vital capacity (FVC), which is the total amount of air that can be forcibly exhaled, is measured. The ratio of these values ( FEV1/FVC ratio ) is used to diagnose lung diseases including asthma, emphysema, and fibrosis. If the FEV1/FVC ratio is high, the lungs are not compliant (meaning they are stiff and unable to bend properly), and the patient most likely has lung fibrosis. Patients exhale most of the lung volume very quickly. Conversely, when the FEV1/FVC ratio is low, there is resistance in the lung that is characteristic of asthma. In this instance, it is hard for the patient to get the air out of his or her lungs, and it takes a long time to reach the maximal exhalation volume. In either case, breathing is difficult and complications arise.

Career Connection

Respiratory Therapist

Respiratory therapists or respiratory practitioners evaluate and treat patients with lung and cardiovascular diseases. They work as part of a medical team to develop treatment plans for patients. Respiratory therapists may treat premature babies with underdeveloped lungs, patients with chronic conditions such as asthma, or older patients suffering from lung disease such as emphysema and chronic obstructive pulmonary disease (COPD). They may operate advanced equipment such as compressed gas delivery systems, ventilators, blood gas analyzers, and resuscitators. Specialized programs to become a respiratory therapist generally lead to a bachelor’s degree with a respiratory therapist specialty. Because of a growing aging population, career opportunities as a respiratory therapist are expected to remain strong.

Gas Pressure and Respiration

The respiratory process can be better understood by examining the properties of gases. Gases move freely, but gas particles are constantly hitting the walls of their vessel, thereby producing gas pressure.

Air is a mixture of gases, primarily nitrogen (N2 78.6 percent), oxygen (O2 20.9 percent), water vapor (H2O 0.5 percent), and carbon dioxide (CO2 0.04 percent). Each gas component of that mixture exerts a pressure. The pressure for an individual gas in the mixture is the partial pressure of that gas. Approximately 21 percent of atmospheric gas is oxygen. Carbon dioxide, however, is found in relatively small amounts, 0.04 percent. The partial pressure for oxygen is much greater than that of carbon dioxide. The partial pressure of any gas can be calculated by:

Patm, the atmospheric pressure, is the sum of all of the partial pressures of the atmospheric gases added together,

× (percent content in mixture).

The pressure of the atmosphere at sea level is 760 mm Hg. Therefore, the partial pressure of oxygen is:

At high altitudes, Patm decreases but concentration does not change the partial pressure decrease is due to the reduction in Patm.

When the air mixture reaches the lung, it has been humidified. The pressure of the water vapor in the lung does not change the pressure of the air, but it must be included in the partial pressure equation. For this calculation, the water pressure (47 mm Hg) is subtracted from the atmospheric pressure:

and the partial pressure of oxygen is:

These pressures determine the gas exchange, or the flow of gas, in the system. Oxygen and carbon dioxide will flow according to their pressure gradient from high to low. Therefore, understanding the partial pressure of each gas will aid in understanding how gases move in the respiratory system.

Gas Exchange across the Alveoli

In the body, oxygen is used by cells of the body’s tissues and carbon dioxide is produced as a waste product. The ratio of carbon dioxide production to oxygen consumption is the respiratory quotient (RQ) . RQ varies between 0.7 and 1.0. If just glucose were used to fuel the body, the RQ would equal one. One mole of carbon dioxide would be produced for every mole of oxygen consumed. Glucose, however, is not the only fuel for the body. Protein and fat are also used as fuels for the body. Because of this, less carbon dioxide is produced than oxygen is consumed and the RQ is, on average, about 0.7 for fat and about 0.8 for protein.

Notice that this pressure is less than the external air. Therefore, the oxygen will flow from the inspired air in the lung ( P O 2 P O 2 = 150 mm Hg) into the bloodstream ( P O 2 P O 2 = 100 mm Hg) (Figure 39.13).

Visual Connection

Which of the following statements is false?

In short, the change in partial pressure from the alveoli to the capillaries drives the oxygen into the tissues and the carbon dioxide into the blood from the tissues. The blood is then transported to the lungs where differences in pressure in the alveoli result in the movement of carbon dioxide out of the blood into the lungs, and oxygen into the blood.

Link to Learning

Watch this video to learn how to carry out spirometry.

As an Amazon Associate we earn from qualifying purchases.

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

    If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:

  • Use the information below to generate a citation. We recommend using a citation tool such as this one.
    • Authors: Mary Ann Clark, Matthew Douglas, Jung Choi
    • Publisher/website: OpenStax
    • Book title: Biology 2e
    • Publication date: Mar 28, 2018
    • Location: Houston, Texas
    • Book URL: https://openstax.org/books/biology-2e/pages/1-introduction
    • Section URL: https://openstax.org/books/biology-2e/pages/39-2-gas-exchange-across-respiratory-surfaces

    © Jan 7, 2021 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.


    Lung Volumes and Capacities in Pregnancy

    In pregnancy, as the uterus enlarges and the abdomen gets distended, the diaphragm is pushed upwards. This results in a decline in the total lung capacity due to a reduction in the residual volume, inspiratory reserve volume and the expiratory reserve volume, sparing the tidal volume. Therefore, the vital capacity and the functional residual capacity tend to decrease. Despite the normal tidal volume, to meet the increased demand of oxygen, the respiratory rate increases resulting in an increase in the minute ventilation.


    Lung Volumes and Capacities

    Different animals have different lung capacities based on their activities. Cheetahs have evolved a much higher lung capacity than humans it helps provide oxygen to all the muscles in the body and allows them to run very fast. Elephants also have a high lung capacity. In this case, it is not because they run fast but because they have a large body and must be able to take up oxygen in accordance with their body size.

    Human lung size is determined by genetics, gender, and height. At maximal capacity, an average lung can hold almost six liters of air, but lungs do not usually operate at maximal capacity. Air in the lungs is measured in terms of lung volumes and lung capacities (see Figure 1 and Table 1). Volume measures the amount of air for one function (such as inhalation or exhalation). Capacity is any two or more volumes (for example, how much can be inhaled from the end of a maximal exhalation).

    Figure 1. Human lung volumes and capacities are shown. The total lung capacity of the adult male is six liters. Tidal volume is the volume of air inhaled in a single, normal breath. Inspiratory capacity is the amount of air taken in during a deep breath, and residual volume is the amount of air left in the lungs after forceful respiration.

    The volume in the lung can be divided into four units: tidal volume, expiratory reserve volume, inspiratory reserve volume, and residual volume. Tidal volume (TV) measures the amount of air that is inspired and expired during a normal breath. On average, this volume is around one-half liter, which is a little less than the capacity of a 20-ounce drink bottle. The expiratory reserve volume (ERV) is the additional amount of air that can be exhaled after a normal exhalation. It is the reserve amount that can be exhaled beyond what is normal. Conversely, the inspiratory reserve volume (IRV) is the additional amount of air that can be inhaled after a normal inhalation. The residual volume (RV) is the amount of air that is left after expiratory reserve volume is exhaled. The lungs are never completely empty: There is always some air left in the lungs after a maximal exhalation. If this residual volume did not exist and the lungs emptied completely, the lung tissues would stick together and the energy necessary to re-inflate the lung could be too great to overcome. Therefore, there is always some air remaining in the lungs. Residual volume is also important for preventing large fluctuations in respiratory gases (O2 and CO2). The residual volume is the only lung volume that cannot be measured directly because it is impossible to completely empty the lung of air. This volume can only be calculated rather than measured.

    Capacities are measurements of two or more volumes. The vital capacity (VC) measures the maximum amount of air that can be inhaled or exhaled during a respiratory cycle. It is the sum of the expiratory reserve volume, tidal volume, and inspiratory reserve volume. The inspiratory capacity (IC) is the amount of air that can be inhaled after the end of a normal expiration. It is, therefore, the sum of the tidal volume and inspiratory reserve volume. The functional residual capacity (FRC) includes the expiratory reserve volume and the residual volume. The FRC measures the amount of additional air that can be exhaled after a normal exhalation. Lastly, the total lung capacity (TLC) is a measurement of the total amount of air that the lung can hold. It is the sum of the residual volume, expiratory reserve volume, tidal volume, and inspiratory reserve volume.

    Lung volumes are measured by a technique called spirometry. An important measurement taken during spirometry is the forced expiratory volume (FEV), which measures how much air can be forced out of the lung over a specific period, usually one second (FEV1). In addition, the forced vital capacity (FVC), which is the total amount of air that can be forcibly exhaled, is measured. The ratio of these values (FEV1/FVC ratio) is used to diagnose lung diseases including asthma, emphysema, and fibrosis. If the FEV1/FVC ratio is high, the lungs are not compliant (meaning they are stiff and unable to bend properly), and the patient most likely has lung fibrosis. Patients exhale most of the lung volume very quickly. Conversely, when the FEV1/FVC ratio is low, there is resistance in the lung that is characteristic of asthma. In this instance, it is hard for the patient to get the air out of his or her lungs, and it takes a long time to reach the maximal exhalation volume. In either case, breathing is difficult and complications arise.

    Practice Questions

    The inspiratory reserve volume measures the ________.

    1. amount of air remaining in the lung after a maximal exhalation
    2. amount of air that the lung holds
    3. amount of air the can be further exhaled after a normal breath
    4. amount of air that can be further inhaled after a normal breath

    Of the following, which does not explain why the partial pressure of oxygen is lower in the lung than in the external air?

    1. Air in the lung is humidified therefore, water vapor pressure alters the pressure.
    2. Carbon dioxide mixes with oxygen.
    3. Lungs exert a pressure on the air to reduce the oxygen pressure.
    4. Oxygen is moved into the blood and is headed to the tissues.

    The total lung capacity is calculated using which of the following formulas?

    1. residual volume + expiratory reserve volume + tidal volume + inspiratory reserve volume
    2. residual volume + tidal volume + inspiratory reserve volume
    3. residual volume + expiratory reserve volume + inspiratory reserve volume
    4. expiratory reserve volume + tidal volume + inspiratory reserve volume

    residual volume + expiratory reserve volume + tidal volume + inspiratory reserve volume

    Careers in ScienCE

    Respiratory Therapist

    Respiratory therapists or respiratory practitioners evaluate and treat patients with lung and cardiovascular diseases. They work as part of a medical team to develop treatment plans for patients. Respiratory therapists may treat premature babies with underdeveloped lungs, patients with chronic conditions such as asthma, or older patients suffering from lung disease such as emphysema and chronic obstructive pulmonary disease (COPD). They may operate advanced equipment such as compressed gas delivery systems, ventilators, blood gas analyzers, and resuscitators. Specialized programs to become a respiratory therapist generally lead to a bachelor’s degree with a respiratory therapist specialty. Because of a growing aging population, career opportunities as a respiratory therapist are expected to remain strong.

    Respiratory therapists use various tests to evaluate patients. For example, they test lung capacity by having patients breathe into an instrument that measures the volume and flow of oxygen when they inhale and exhale. Respiratory therapists also may take blood samples and use a blood gas analyzer to test oxygen and carbon dioxide levels.

    Respiratory therapists also perform chest physiotherapy on patients to remove mucus from their lungs and make it easier for them to breathe. Removing mucus is necessary for patients suffering from lung diseases, such as cystic fibrosis, and it involves the therapist vibrating the patient’s rib cage, often by tapping the patient’s chest and encouraging him or her to cough. Respiratory therapists may connect patients who cannot breathe on their own to ventilators that deliver oxygen to the lungs. Therapists insert a tube in the patient’s windpipe (trachea) and connect the tube to ventilator equipment. They set up and monitor the equipment to ensure that the patient is receiving the correct amount of oxygen at the correct rate.

    Respiratory therapists who work in home care teach patients and their families to use ventilators and other life-support systems in their homes. During these visits, they may inspect and clean equipment, check the home for environmental hazards, and ensure that patients know how to use their medications. Therapists also make emergency home visits when necessary.

    In some hospitals, respiratory therapists are involved in related areas, such as diagnosing breathing problems for people with sleep apnea and counseling people on how to stop smoking.

    In Summary: Breathing Capacity

    The lungs can hold a large volume of air, but they are not usually filled to maximal capacity. Lung volume measurements include tidal volume, expiratory reserve volume, inspiratory reserve volume, and residual volume. The sum of these equals the total lung capacity.


    Lab Report Lung Capacity Ib Biology Hl

    Lung Capacity
    I. Introduction.
    The chest contains two lungs, one lung on the right side of the chest, the other on the left side of the chest. Each lung is made up of sections called lobes. The lungs are soft and protected by the ribcage. The purpose of the lungs is to bring oxygen into the body and to remove carbon dioxide. Oxygen is a gas that provides us with energy, while carbon dioxide is a waste product or “exhaust” of the body. | To deliver oxygen to the body, air is breathed in through the nose, mouth or both. Lung capacity is the volume of the most air you can exhale after fully breathing in. Based on that I will experiment with two kind of subjects in order to measure their lung capacity and get conclusions about the results. II. Research Question

    How does exercise affect the lung capacity of people?
    III. Variables
    Variables | Control of the variables |
    Independent variable | Level of exercise | I will control my independent variable by working with people who do exercise and people who don’t do exercise at all. | Dependent variable | Volume of air in a balloon as measured by the displaced from a bucket | In order to control my depend variable I use a tray to measure the amount of water displaced from the bucket, and from there measure their lung capacity. | Controlled variables | Temperature | For each controlled variable I | | Pressure | Just don’t consider their effect |

    | Smoker persons | Because I perform the whole |
    | The altitude of La Paz city | Experiment under the same conditions. And ask some questions to the volunteers first. | IV. Materials
    The materials used for the procedure are:
    1. 14 balloons
    2. 1 tray
    3. 1 bucket
    4. Graduated cylinder
    5. Water

    1. I chose specific volunteers who could help me with the experiment, some of those athletics and the other persons who don’t do exercise. 2. I ask them to take in the deepest breath they can.

    3. Once they had took their deepest breath the Inflate a balloon with the single deep breath. 4. In order to make easier the process of measure I tie the balloon off. 5. I put a large and deep oven tray in the floor.

    6. After that I filled an empty bucket with water with water to a height close to the edge but not enough to overflow for later be able to introduce the balloon 7. Then I situated the bucket in the center of the tray.

    8. Once I placed the bucket in the center of the tray, I dunk the balloon into the water being careful in the process in order to not spill extra water into the tray. 9. As I was introducing the balloon the water started pouring out of the bucket and fall into the oven tray. 10. When the balloon is fully submerged I took the bucket with the balloon away from the tray. 11. Finally I poured the water from the oven tray into a graduated cylinder and wrote down the results.

    VI. Safety Precautions
    In order to take precautions in the lab I used a lab coat to prevent getting wet. Also, because we don’t want anything to break I handle the bucket, oven tray and graduated cylinder with caution. Is not extra to remember that even though the substance being analyzed is water, do not taste or drink any because it may be contaminated with undesired chemicals from prior laboratories. Also since I’m working with humans I include the IB experimentation with animals policy: Any planned and actual experimentation involving animals must be subject to approval Following a discussion between teacher and student(s) based on the IB animal experimentation policy. • Experiments involving animals must be based on observing and measuring aspects of natural animal behavior. Any experimentation should not result in any pain or undue stress on any animal (vertebrate or invertebrate) or compromise its health in any way. Therefore experiments that administer drugs or medicines or manipulate the environment or diet beyond that easily tolerated.


    The volume in the lung can be divided into four units: tidal volume, expiratory reserve volume, inspiratory reserve volume, and residual volume. Tidal volume (TV) measures the amount of air that is inspired and expired during a normal breath. On average, this volume is around one-half liter, which is a little less than the capacity of a 20-ounce drink bottle. The expiratory reserve volume (ERV) is the additional amount of air that can be exhaled after a normal exhalation. It is the reserve amount that can be exhaled beyond what is normal. Conversely, the inspiratory reserve volume (IRV) is the additional amount of air that can be inhaled after a normal inhalation. The residual volume (RV) is the amount of air that is left after expiratory reserve volume is exhaled. The lungs are never completely empty there is always some air left in the lungs after a maximal exhalation. If this residual volume did not exist and the lungs emptied completely, the lung tissues would stick together. The energy necessary to re-inflate the lung could be too great to overcome. Therefore, there is always some air remaining in the lungs. Residual volume is also important for preventing large fluctuations in respiratory gases (O2 and CO2). The residual volume is the only lung volume that cannot be measured directly because it is impossible to completely empty the lung of air. This volume can only be calculated rather than measured. .

    Lung volumes are measured by a technique called spirometry. An important measurement taken during spirometry is the forced expiratory volume (FEV), which measures how much air can be forced out of the lung over a specific period, usually one second (FEV1). In addition, the forced vital capacity (FVC), which is the total amount of air that can be forcibly exhaled, is measured. The ratio of these values (FEV1/FVC ratio) is used to diagnose lung diseases including asthma, emphysema, and fibrosis. If the FEV1/FVC ratio is high, the lungs are not compliant (meaning they are stiff and unable to bend properly) the patient probably has lung fibrosis. Patients exhale most of the lung volume very quickly. Conversely, when the FEV1/FVC ratio is low, there is resistance in the lung that is characteristic of asthma. In this instance, it is difficult for the patient to get the air out of his or her lungs. It takes a long time to reach the maximal exhalation volume. In either case, breathing is difficult and complications arise.


    Lung Volumes and Capacities

    Marino Vethanayagam left Lung Volumes and Capacities Marino Vethanayagam changed description of Lung Volumes and Capacities Marino Vethanayagam changed description of Lung Volumes and Capacities Marino Vethanayagam changed description of Lung Volumes and Capacities Marino Vethanayagam changed description of Lung Volumes and Capacities Marino Vethanayagam changed description of Lung Volumes and Capacities Marino Vethanayagam changed description of Lung Volumes and Capacities Marino Vethanayagam changed description of Lung Volumes and Capacities Marino Vethanayagam changed description of Lung Volumes and Capacities Marino Vethanayagam attached Figure_39_02_01.jpg to Lung Volumes and Capacities Marino Vethanayagam joined Lung Volumes and Capacities Marino Vethanayagam added Lung Volumes and Capacities to Animal Systems

    Lung Capacities.

    Four capacities have been described based on the four lung volumes:

    1. Inspiratory Capacity (IC) is the maximum volume of air that can be inhaled following a resting state. This can be calculated by the addition of tidal volume and the IRV.
    2. Vital Capacity (VC) is the maximum volume of air that can be exhaled following a deep inspiration. This is the total of IRV + TV + ERV.
    3. Functional Residual Capacity (FRC) is the volume of air that remains in the lungs during quite breathing. FRC = ERV + RV.
    4. Total Lung Capacity (TLC) is the volume the whole respiratory system can accommodate. Therefore, TLC= IRV + TV + ERV + RV.

    Lung capacities and lung volumes are affected in different types of physiological processes as well as in lung diseases. The specific changes that occur in different types of diseases will be described in a separate hub along with examples for different patterns of abnormalities seen in the lung volumes.



Comments:

  1. Tojat

    Excuse for that I interfere... To me this situation is familiar. Is ready to help.

  2. Ezekiel

    I mean, you allow the mistake. I can prove it.

  3. Mauzuru

    This post, is incomparable))), I really like :)

  4. Qochata

    Rather amusing answer



Write a message